

MARCO NORMATIVO DE IT

ES0903 - Estándar de Desarrollo API
Agencia de Sistemas de Información

Enero 2026

2026

Índice

Índice..2

1 Introducción...3

2 Marco Normativo de TI...3

3 Requisitos ...3

4 Lineamientos ...4

5 Idioma ..4

6 URLs RESTful ..4

7 Verbos HTTP ..5

8 Soporte JSON ...5

9 Formato de fecha ..6

10 Manejo de errores ...6
10.1 Listado de códigos de estado ... 7

11 UTF-8 ..8

12 Versionado de API Docs ..9

13 Límite de registros ...9

14 Datos de prueba ... 11

15 Seguridad .. 11

16 Claves API .. 11

17 CORS .. 12

18 Documentación .. 12

19 Referencias .. 14

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 3 / 14

1 Introducción
El presente documento tiene por finalidad definir los requisitos que deben cumplir todas las APIs del
GCABA en su diseño, desarrollo e implementación, así como también establecer la interacción con los
distintos actores involucrados en el proceso de desarrollo de dichas APIs. Corresponde mencionar que
el presente Estándar de desarrollo de API se complementa con los Estándares de Desarrollo (ASI) y
Seguridad (ASI), los cuáles se enfocan en los aspectos estructurales de las aplicaciones y su entorno de
operación.

Se deja constancia que las definiciones utilizadas son aplicables para las APIs desarrolladas según
especificaciones de las distintas reparticiones y agencias de la GCABA.

Con los siguientes estándares se busca homogeneizar la experiencia entre los diversos activos del
Estado, para facilitar la comprensión y utilización, primando la usabilidad, accesibilidad y experiencia.

2 Marco Normativo de TI
Toda solución de software deberá cumplir con lo expresado en el Marco Normativo de TI del GCABA,
publicado en el boletín oficial del día 08-11-2013, Resolución 177-ASINF-2013, Resolución 239-
ASINF/2014 y N° 12/ASINF/17. Dicha documentación se encuentra disponible en
https://buenosaires.gob.ar/agencia-de-sistemas-de-informacion/estandares-de-la-agencia

3 Requisitos
Las APIs deben cumplir con los estándares establecidos en este documento a fin de lograr los siguientes
objetivos:

IMPORTANTE: Todos los sistemas que se desarrollen en el ámbito de los proyectos de GCABA
deben respetar la totalidad de los criterios aquí descriptos. Si para algún proyecto en particular,
se requiere un acuerdo diferente para alguno de los puntos detallados en este documento, el
mismo tiene que quedar establecido por contrato, y este último deberá contar con la aprobación
de la Agencia de Sistema de Información.

https://buenosaires.gob.ar/agencia-de-sistemas-de-informacion/estandares-de-la-agencia
https://buenosaires.gob.ar/agencia-de-sistemas-de-informacion/estandares-de-la-agencia

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 4 / 14

4 Lineamientos
Estos lineamientos tienen como objetivo lograr una verdadera API RESTful.

Excepciones a tener en cuenta:

• Incluir el número de versión de la API en la URL. No se debe aceptar ninguna petición que no
especifique el número de versión.

• No traducir al español lo que DEBE estar en inglés.

Armar una documentación detallada:
https://repositorio-ce-asi.buenosaires.gob.ar/

● Para el diseño y documentación de la misma utilizar herramientas como:

o Swagger

o Raml

5 Idioma

Bajo ningún concepto se debe traducir lo que DEBE estar en inglés. A continuación, se detallan algunos
ejemplos:

Ejemplo válido:

• http://www.buenosaires.gob.ar/api/v1/articulos?year=2016&sort=desc

Ejemplo NO válido:

• http://www.buenosaires.gob.ar/api/v1/articulos?anio=2016&orden=desc

Esta restricción también incluye:

• Nombres de los parámetros de consulta (query parameters): Como year, sort, filter, page,
limit, etc.

• Valores específicos de ciertos parámetros: Como asc o desc para ordenamiento, ciertos
códigos de estado o categorías predefinidas.

6 URLs RESTful

Lineamientos generales:

● Una URL identifica un recurso.

● Las URLs DEBEN incluir sustantivos, no verbos.

● Usar sustantivos en plural solamente para consistencia (no sustantivos en singular).

● Usar los verbos HTTP apropiados (GET, POST, PUT, PATCH, DELETE) para operar en las colecciones y
elementos.

● No se debe necesitar ir más allá de resource/identifier/resource.

● Indicar solo el número de versión mayor en la URL. Esta URL cambiará en el momento que el
contrato cambie. Por ejemplo: http://ejemplo.gob.ar/v1/path/to/resource

● Especificar campos opcionales como una lista separada por coma.

● Para indicar el formato de respuesta, utilizar el campo content-type del header siendo por defecto el
formato JSON. Por ejemplo:

o XML: Content-Type: application/xml

o JSON: Content-Type: application/json; charset=utf-8

● El formato puede ser: api/v2/resource/{id}

https://repositorio-ce-asi.buenosaires.gob.ar/
https://swagger.io/
https://raml.org/

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 5 / 14

Ejemplos válidos de URLs:

• Obtener la lista de artículos:

o GET http://www.buenosaires.gob/api/v1/articulos

• Filtrar con query string:

o GET http://www.buenosaires.gob/api/v1/articulos?year=2016&sort=desc

• Obtener un artículo en formato JSON:

o GET http://www.buenosaires.gob.ar/api/v1/articulos/1234

• Agregar un comentario a un artículo específico:

o POST http://www.buenosaires.gob.ar/api/v1/articulos/1234/comentarios

Ejemplos NO válidos de URLs:

• Sustantivos singulares:

o http://www.buenosaires.gob.ar/articulo

• Filtro fuera del query string:

o http://www.buenosaires.gob/articulos/2016/desc

• Formato de número de versión:

o GET http://www.buenosaires.gob.ar/api/v1/articulos/1234

7 Verbos HTTP

Los verbos HTTP (o métodos), se deben utilizar en el cumplimiento de sus definiciones de la norma 1.1
/ HTTP. Se comparte un ejemplo de cómo deben ser los verbos HTTP para crear, leer, actualizar y
eliminar las operaciones en un contexto particular:

Método HTTP POST GET PUT/PATCH DELETE

Operación CREATE READ UPDATE DELETE
/artículos Crea nuevo

articulo
Lista de artículos

Error
Elimina todos
los artículos

/artículos/1234 Error Muestra articulo
1234

Si existe, actualiza el
artículo; sino devuelve
error.

Borra 1234

8 Soporte JSON

Las respuestas DEBEN ser un objeto JSON (no un array): usar un array para retornar resultados limita la
capacidad de incluir metadata sobre resultados y la capacidad de las API’s para agregar top-level keys
en el futuro.

No usar claves impredecibles: realizar el parsing de una respuesta JSON donde las claves son
impredecibles es difícil y genera malestar a los clientes.

Usar guión_bajo para las claves: diferentes lenguajes usan diferentes convenciones. JSON usa
guión_bajo, no camelCase.

Rever estándar Json**

Más info en json.org

http://www.buenosaires.gob/api/v1/articulos
http://www.buenosaires.gob/api/v1/articulos?year=2016&sort=desc
http://www.buenosaires.gob.ar/api/v1/articulos/1234
http://www.buenosaires.gob.ar/api/v1/articulos/1234/comentarios
http://www.buenosaires.gob.ar/articulo
http://www.buenosaires.gob/articulos/2016/desc
http://www.buenosaires.gob.ar/api/v1/articulos/1234
http://www.json.org/json-es.html

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 6 / 14

Respuestas

• No incluir valores en las claves.

• La metadata solamente debe contener propiedades directas a la respuesta, no propiedades
relacionadas a la información de la respuesta.

Ejemplo válido
Sin valores en claves:

"tags": [

{"id": "125", "name": "Ciudadano"},

{"id": "834", "name": "Servicios"}

],

Ejemplo NO válido
Con valores en claves:

"tags": [

 {"125": "Ciudadano"},

 {"834": "Servicios"}

],

9 Formato de fecha

Usar ISO 8601, en UTC.

• Para utilizar solo fechas, el formato debe ser: 2016-01-27.

• Para fechas completas, el formato debe ser: 2016-01-27T10:00:00Z.

o 2016-01-27T10:00:00Z

▪ año, mes, día
▪ hora, minutos, segundos

▪ UTC

Puede obtenerse más información en The 5 laws of API dates and times

10 Manejo de errores

Las respuestas de errores DEBEN incluir los códigos de estado HTTP, mensaje para el desarrollador,
mensaje para el usuario final, código de error interno y enlaces con más información para los
desarrolladores.

Por ejemplo:

{

 "status": 400,

 "developerMessage": "Detallar una descripción clara del
problema. Proveer a los desarrolladores sugerencias de cómo
resolver sus problemas.",

 "userMessage": "Este es el mensaje para el usuario final.",

 "errorCode": "444444",

http://apiux.com/2013/03/20/5-laws-api-dates-and-times/
http://apiux.com/2013/03/20/5-laws-api-dates-and-times/
http://apiux.com/2013/03/20/5-laws-api-dates-and-times/

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 7 / 14

 "moreInfo":
"http://www.ejemplo.gob.ar/developer/path/to/help/for/444444,
http://drupal.org/node/444444",

}

Usar estos 3 simples códigos de respuesta indicando (1) éxito, (2) fallo debido a un problema del cliente,
(3) fallo debido a un problema del servidor:

200 - OK

400 - Bad Request

500 - Internal Server Error

10.1 Listado de códigos de estado

1×× Informational

100 Continue

101 Switching Protocols

102 Processing

2×× Success

200 OK

201 Created

202 Accepted

203 Non-authoritative Information

204 No Content

205 Reset Content

206 Partial Content

207 Multi-Status

208 Already Reported

226 IM Used

3×× Redirection

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary Redirect

308 Permanent Redirect

4×× Client Error

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

https://httpstatuses.com/100
https://httpstatuses.com/100
https://httpstatuses.com/101
https://httpstatuses.com/101
https://httpstatuses.com/102
https://httpstatuses.com/102
https://httpstatuses.com/200
https://httpstatuses.com/200
https://httpstatuses.com/201
https://httpstatuses.com/201
https://httpstatuses.com/202
https://httpstatuses.com/202
https://httpstatuses.com/203
https://httpstatuses.com/203
https://httpstatuses.com/204
https://httpstatuses.com/204
https://httpstatuses.com/205
https://httpstatuses.com/205
https://httpstatuses.com/206
https://httpstatuses.com/206
https://httpstatuses.com/207
https://httpstatuses.com/207
https://httpstatuses.com/208
https://httpstatuses.com/208
https://httpstatuses.com/226
https://httpstatuses.com/226
https://httpstatuses.com/300
https://httpstatuses.com/300
https://httpstatuses.com/301
https://httpstatuses.com/301
https://httpstatuses.com/302
https://httpstatuses.com/302
https://httpstatuses.com/303
https://httpstatuses.com/303
https://httpstatuses.com/304
https://httpstatuses.com/304
https://httpstatuses.com/305
https://httpstatuses.com/305
https://httpstatuses.com/307
https://httpstatuses.com/307
https://httpstatuses.com/308
https://httpstatuses.com/308
https://httpstatuses.com/400
https://httpstatuses.com/400
https://httpstatuses.com/401
https://httpstatuses.com/401
https://httpstatuses.com/402
https://httpstatuses.com/402
https://httpstatuses.com/403
https://httpstatuses.com/403
https://httpstatuses.com/404
https://httpstatuses.com/404
https://httpstatuses.com/405
https://httpstatuses.com/405

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 8 / 14

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

411 Length Required

412 Precondition Failed

413 Payload Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

418 I'm a teapot

421 Misdirected Request

422 Unprocessable Entity

423 Locked

424 Failed Dependency

426 Upgrade Required

428 Precondition Required

429 Too Many Requests

431 Request Header Fields Too Large

444 Connection Closed Without Response

451 Unavailable For Legal Reasons

499 Client Closed Request

5×× Server Error

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

506 Variant Also Negotiates

507 Insufficient Storage

508 Loop Detected

510 Not Extended

511 Network Authentication Required

599 Network Connect Timeout Error

11 UTF-8
Se debe utilizar UTF-8

Esperar caracteres acentuados o comillas en la salida de la API, aun cuando no se esperen.

Una API debe informar a los clientes de esperar UTF-8 mediante la inclusión de una notación de
caracteres en la cabecera Content-Type para las respuestas.

Una API que retorna JSON DEBE usar: Content-Type: application/json; charset=utf-8

https://httpstatuses.com/406
https://httpstatuses.com/406
https://httpstatuses.com/407
https://httpstatuses.com/407
https://httpstatuses.com/408
https://httpstatuses.com/408
https://httpstatuses.com/409
https://httpstatuses.com/409
https://httpstatuses.com/411
https://httpstatuses.com/411
https://httpstatuses.com/412
https://httpstatuses.com/412
https://httpstatuses.com/413
https://httpstatuses.com/413
https://httpstatuses.com/414
https://httpstatuses.com/414
https://httpstatuses.com/415
https://httpstatuses.com/415
https://httpstatuses.com/416
https://httpstatuses.com/416
https://httpstatuses.com/417
https://httpstatuses.com/417
https://httpstatuses.com/418
https://httpstatuses.com/418
https://httpstatuses.com/421
https://httpstatuses.com/421
https://httpstatuses.com/422
https://httpstatuses.com/422
https://httpstatuses.com/423
https://httpstatuses.com/423
https://httpstatuses.com/424
https://httpstatuses.com/424
https://httpstatuses.com/426
https://httpstatuses.com/426
https://httpstatuses.com/428
https://httpstatuses.com/428
https://httpstatuses.com/429
https://httpstatuses.com/429
https://httpstatuses.com/431
https://httpstatuses.com/431
https://httpstatuses.com/444
https://httpstatuses.com/444
https://httpstatuses.com/451
https://httpstatuses.com/451
https://httpstatuses.com/499
https://httpstatuses.com/499
https://httpstatuses.com/500
https://httpstatuses.com/500
https://httpstatuses.com/501
https://httpstatuses.com/501
https://httpstatuses.com/502
https://httpstatuses.com/502
https://httpstatuses.com/503
https://httpstatuses.com/503
https://httpstatuses.com/504
https://httpstatuses.com/504
https://httpstatuses.com/505
https://httpstatuses.com/505
https://httpstatuses.com/506
https://httpstatuses.com/506
https://httpstatuses.com/507
https://httpstatuses.com/507
https://httpstatuses.com/508
https://httpstatuses.com/508
https://httpstatuses.com/510
https://httpstatuses.com/510
https://httpstatuses.com/511
https://httpstatuses.com/511
https://httpstatuses.com/599
https://httpstatuses.com/599
http://utf8everywhere.org/

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 9 / 14

12 Versionado de API Docs

• Nunca liberar la versión de una documentación de API sin su correspondiente número.

• Los números de versión deben abarcar tres niveles de versión: X.Y.Z

a. X= Versión Mayor debe ser incrementada por cualquier cambio no compatible con la
versión anterior de la documentación de las APIs.

b. Y= Versión Menor debe ser incrementado si se introduce nueva funcionalidad compatible
con la versión anterior.

c. Z= Versión Patch debe ser incrementado cuando se introducen solo arreglos compatibles
con la versión anterior.

• Los números correspondientes a las versiones mayor, menor y patch son enteros no negativos y se
incrementan en 1, comenzando en 1.

• Las versiones deben ser expresadas en números enteros, no decimales, con el prefijo ‘v’.

• Dar soporte al menos hasta una versión anterior a la actual.

• Ejemplos:

o Válido: v1.0.0, v2.1.0, v3.5.0

o No válido: v-1.1.0

13 Límite de registros

• Si el límite no está especificado, retornar resultados con un valor por defecto.

• Por ejemplo, para obtener registros de 51 a 75, hacer lo siguiente:

o http://APIrenaper.buenosaires.gob.ar/dni?limit=25&offset=50

o offset=50 significa, ‘evitar los primeros 50 registros’

o limit=25 significa, ‘retornar un máximo de 25 registros’

La información sobre los límites de registros y totales disponibles DEBEN ser incluidos en la respuesta.
Por ejemplo:

{

 "metadata": {

 "resultset": {

 "count": 225874,

 "offset": 25,

 "limit": 25

 }

 },

 "results": []

}

Ejemplos de Peticiones y Respuestas
• GET /artículos

• GET /articulos/[id]

• POST /articulos/[id]/comentarios

http://apirenaper.buenosaires.gob.ar/dni?limit=25&offset=50
https://github.com/argob/estandares/blob/master/estandares-apis.md#get-articulos
https://github.com/argob/estandares/blob/master/estandares-apis.md#get-articulosid
https://github.com/argob/estandares/blob/master/estandares-apis.md#post-articulosidcomentarios

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 10 / 14

GET /articulos

Ejemplo: http://www.buenosaires.gob.ar/api/v1/articulos

Respuesta:

{

 "metadata": {

 "resultset": {

 "count": 123,

 "offset": 0,

 "limit": 10

 }

 },

 "results": [

 {

 "userId": 1,

 "id": 1,

 "title": "sunt aut facere repellat occaecati",

 "body": "quia et suscipit recusandae expedita."

 },

 {

 "userId": 2,

 "id": 2,

 "title": "qui est esse",

 "body": "est rerum tempore vitae sequi nihil dolor."

 }

]

}

GET /artículos/[id]

Ejemplo: http://www.buenosaires.gob.ar/api/v1/articulos/[id]

Respuesta:

{

 "userId": 1,

 "id": 1,

 "title": "sunt aut facere repellat occaeati excepturi optio",

 "body": "quia et suscipit suscipit consequuntur expedita."

}

POST /articulos/[id]/comentarios

Ejemplo: Crear – POST http:// www.buenosaires.gob.ar /api/v1/articulos/[id]/comentarios

Cuerpo de la solicitud:

{

 "postId": 1,

 "id": 1,

 "name": "id labore ex et quam laborum",

 "email": "pedro@ejemplo.com",

 "body": "laudantium enim quasi est quidem ipsam eos."

}

http://www.buenosaires.gob.ar/api/v1/articulos
http://www.buenosaires.gob.ar/api/v1/articulos
http://ejemplo.gob/api/v1.0/articulos/%5Bid%5D/comentarios
http://ejemplo.gob/api/v1.0/articulos/%5Bid%5D/comentarios

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 11 / 14

14 Datos de prueba
Cada recurso debe aceptar un parámetro 'mock' en el servidor de prueba. Pasando este parámetro, se
debe devolver una respuesta de datos simulada (sin pasar por el backend).

La implementación de esta función en la primera etapa del desarrollo asegura que la API exhibirá un
comportamiento coherente.

Nota: Si el parámetro ‘mock’ está incluido en una solicitud para el entorno de producción, debe mostrar
un error.

15 Seguridad
Cualquier API que se desarrolle debe usar HTTPS encryption (TLS/SSL). HTTPS provee:

• Seguridad. El contenido de las peticiones está encriptado a través de Internet.

• Autenticidad. Una garantía más fuerte de que un cliente se comunica con la API real.

• Privacidad. Privacidad mejorada para las aplicaciones y usuarios que usan la API. Las cabeceras
HTTP y los parámetros query string (entre otras cosas) serán encriptadas.

• Compatibilidad. Más amplia compatibilidad del lado del cliente. Para solicitudes CORS a la API para
trabajar en los sitios web HTTPS - para no ser bloqueado en forma de contenido mixto - esas
peticiones deben ser a través de HTTPS.

HTTPS debe estar configurado aplicando las mejores prácticas, incluyendo cifrado que soporte forward
secrecy y Seguridad de transporte HTTP estricta (HTTP Strict Transport Security).

Para APIs existentes que corren sobre HTTP, el primer paso es agregar soporte HTTPS y actualizar la
documentación aclarando que es la configuración por defecto, usándolo en los ejemplos, etc.

Luego, evaluar la posibilidad de deshabilitar o redireccionar a peticiones HTTP.

16 Claves API
client_id y client_secret

OpenID

app_id y app-key

Es importante que las APIs tengan la forma de poder identificar qué aplicación quiere acceder a los
recursos. Para esto, se utiliza una clave que va junto con el request.

Ejemplo API’s Infraciones:

https://servicios.gcba.gob.ar/SAI-InfraccionesApi/api/actas-varios/600200001/resultado

header client_id: abc88c4d5b212345667897bd5ab094

header client_secret: abce4191234567898452a146a

Resultado de esta identificación:

• Previene peticiones de usuarios anónimos.

• Previene que datos sensibles sean expuestos.

• Se puede aplicar *rate limiting* dependiendo el cliente.

• Previene vulneraciones de la seguridad de los datos

https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 12 / 14

17 CORS
Para que los clientes puedan usar una API desde el front de una aplicación, la API DEBE tener habilitado
CORS.

Para el más simple y común caso de uso, donde toda la API entera deba ser accesible desde el navegador,
habilitar CORS es tan simple como incluir esta cabecera HTTP en todas las respuestas:

Access-Control-Allow-Origin: *

Access-Control-Allow-Origin: http://example.com

Access-Control-Allow-Methods: PUT, POST, DELETE

• Access-Control-Allow-Origin: ¿qué origen está permitido?

• Access-Control-Allow-Credentials: ¿también se aceptan solicitudes cuando el modo de

credenciales es incluir (include)?

• Access-Control-Allow-Headers: ¿qué cabeceras pueden utilizarse?

• Access-Control-Allow-Methods: ¿qué métodos de petición HTTP están permitidos?

• Access-Control-Expose-Headers: ¿qué cabeceras pueden mostrarse?

• Access-Control-Max-Age: ¿cuándo pierde su validez la solicitud preflight?

• Access-Control-Request-Headers: ¿qué header HTTP se indica en la solicitud preflight?

• Access-Control-Request-Method: ¿qué método de petición HTTP se indica en la solicitud preflight?

Esto tiene soporte por todos los navegadores modernos y funciona simplemente en todos los clientes
JavaScript, como jQuery.

Para una configuración más avanzada, ver la especificación de W3C o la guía de Mozilla.

Por ese motivo el CORS ofrece una solución intermedia, permitiendo hacer excepciones a la prohibición
en aquellas situaciones en que las solicitudes de origen cruzado son expresamente requeridas. No
obstante, se corre el riesgo de que los administradores web se aprovechen de las wildcards por
comodidad, haciendo que la protección de la SOP sea en vano. Por eso, es importante utilizar el
CORS solo en casos especiales y configurarlo de la manera más restrictiva posible.

18 Documentación
Todas las APIs deben contar con una documentación clara, accesible, actualizada y centrada en el
consumidor.

Requisitos mínimos de la documentación:

• Nombre de la API

• Descripción: descripción general de su propósito.

• Versión actual: de versiones anteriores (cuando aplique).

• Contacto: mail@xxxxxx.com

• Environment: para cada ambiente (dev, test, prod).

• Autenticación requerida, incluyendo mecanismos utilizados (token, OAuth, API key, etc). En caso
de utilizar tokens dinámicos, los mismos deben tener una vigencia no mayor a 15 minutos.

• Listado completo de endpoints con la siguiente información por cada uno:

o Método HTTP (GET, POST, etc.)

o Ruta (/usuarios/{id})

o Descripción funcional

o Parámetros de entrada (query, path, header, body)

o Ejemplo de solicitud (request)

http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/client.html
https://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 13 / 14

o Ejemplo de respuesta (response), incluyendo posibles códigos de estado (200, 400, 401,
etc.)

o Definiciones de errores

• Esquemas de datos (models) usados por la API, incluyendo:

o Campos requeridos

o Tipos de datos

o Validaciones

o Relación entre objetos

Herramientas sugeridas para la documentación:

• Swagger

ES0903 - Estándar de Desarrollo de APIs - Agencia de Sistemas - Versión 2.2 Pág. 14 / 14

• RAML

19 Referencias

• White House Web API Standards

• W3C: REST

• 18F API Standards

• Best Practices for Designing a Pragmatic RESTful API

https://github.com/WhiteHouse/api-standards
https://www.w3.org/2001/sw/wiki/REST
https://github.com/18F/api-standards
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

